Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[[[(2,2'-bipyridine)copper(II)]- μ terephthalato] N, N-dimethylformamide solvate]

Xin-Hua Li and Hong-Ping Xiao*
Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: hp_xiao@wznc.zj.cn

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.052$
$w R$ factor $=0.133$
Data-to-parameter ratio $=13.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title complex, $\left\{\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right\}_{n}$, each Cu atom is surrounded by three O atoms from two terephthalate dianions and two N atoms from a 2,2'-bipyridine molecule, forming a distorted square-pyramidal geometry. The terephthalate dianion functions as a bridge between two Cu atoms and forms a one-dimensional zigzag chain coordination polymer.

Comment

During the study of the structures of complexes in the $\mathrm{Cu}^{2+} /$ phen $/ \mathrm{H}_{2}$ tp (phen is 1,10 -phenanthroline and H_{2} tp is terephthalic acid) system (Cano et al., 1997; Chen et al., 2004; Sun et al., 2000, 2001; Xiao et al., 2004; Zhu et al., 2004) and in the $\mathrm{Cu}^{2+} / 2,2^{\prime}$-bipy $/ \mathrm{H}_{2}$ ta (2,2'-bipy is 2,2'-bipyridine) system (Xiao \& Zhu, 2003), we obtained a series of dinuclear complexes and one-dimensional zigzag chain coordination polymers. These complexes display a diversity of structures, and new complexes are constantly being produced through different reactions and even small changes, such as the use of different solvents, temperature, synthesis conditions or H -atom acceptors. All of these factors encouraged us to research these systems more deeply. Here, the title compound, $\left[\mathrm{Cu}\left(2,2^{\prime}\right.\right.$-bipy)(tp)]•(DMF), (I), represents an example.

In (I), the Cu atom is surrounded by three O atoms from two terephthalate dianions and two N atoms from a $2,2^{\prime}$-bipyridine molecule in a distorted square-pyramidal geometry (Fig. 1). The $\mathrm{Cu} 1-\mathrm{N} 1$ and $\mathrm{Cu} 1-\mathrm{N} 2$ bonds lengths are 1.996 (3) and 2.007 (3) \AA, respectively. The apical position is occupied by atom O 1 , the corresponding axial $\mathrm{Cu} 1-\mathrm{O} 1$ [2.401 (3) A] bond length being longer than the two basal $\left[\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}=1.930(2) \AA\right.$ and $\mathrm{Cu} 1-\mathrm{O} 2=1.992(2) \AA$; symmetry code: (i) $x-\frac{1}{2}, y, \frac{1}{2}-z$] bonds lengths.

The terephthalate dianion functions as a bridge between two Cu atoms in a tridentate coordination mode. The 2,2'-

Received 17 May 2004 Accepted 25 May 2004 Online 5 June 2004

The coordination environment of the $\mathrm{Cu}^{\text {II }}$ cation in (I), with atom numbering for the asymmetric unit, showing displacement ellipsoids at the 50% probability level.

Figure 2
A view of the one-dimensional zigzag chain structure in (I); the DMF solvent molecules and H atoms have been omitted for clarity.

A view, down the b axis, of the packing; the DMF solvent molecules and H atoms have been omitted for clarity.
bipyridine group acts as a chelating ligand. A one-dimensional zigzag chain is formed by the $\mathrm{Cu}^{\mathrm{II}}$ cations, the μ_{2}-bridging terephthalate dianions and the chelating 2,2'-bipyridine ligands (Fig. 2); this configuration is similar to that reported for $\left[\mathrm{Cu}\left(2,2^{\prime}\right.\right.$-bipy $\left.)(\mathrm{tp})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(2 \mathrm{H}_{2} \mathrm{O}\right)(\mathrm{DMF})$ (Xiao \& Zhu , 2003). Moreover, there are $\pi-\pi$ interactions involving the $2,2^{\prime}$ bipyridine ligands belonging to adjacent zigzag chains, with a distance of about $3.45 \AA$. Adjacent zigzag chains interweave with each other to generate a two-dimensional network structure with cavities (Fig. 3). The DMF solvent molecules fill the cavities.

Experimental

A solution (10 ml) of dimethylformamide containing $\mathrm{Cu}_{2} \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $(0.3 \mathrm{mmol})$ was added dropwise to a solution $(10 \mathrm{ml})$ of dimethylformamide containing $2,2^{\prime}$-bipyridine (0.3 mmol), terephthalic acid $(0.3 \mathrm{mmol})$ and $1,1^{\prime}$-carbonyldiimidazole $(0.3 \mathrm{mmol})$ at room temperature. The reaction mixture was filtered and the filtrate was left to stand for about two weeks until blue single crystals were obtained.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
$M_{r}=456.94$
Orthorhombic, Pbca
$a=16.6884$ (7) \AA
$b=10.9585$ (5) A
$c=22.0082(9) \AA$
$V=4024.9(3) \AA^{3}$
$Z=8$
$D_{x}=1.508 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3619
reflections
$\theta=2.4-23.0^{\circ}$
$\mu=1.12 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Prism, blue
$0.27 \times 0.18 \times 0.13 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
3619 independent reflections
3139 reflections with $I>2 \sigma(I)$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.784, T_{\text {max }}=0.863$
19899 measured reflections
$R_{\text {int }}=25.2^{\circ}$
$\theta_{\text {max }}=29$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-19 \rightarrow 14$
$k=-13 \rightarrow 12$

Refinement

Refinement on F^{2}

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0642 P)^{2}\right.
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.133$
$S=1.10$
3619 reflections
273 parameters
H-atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$1.930(2)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$2.007(3)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$1.992(2)$	$\mathrm{Cu} 1-\mathrm{O} 1$	$2.401(3)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.996(3)$		
$\mathrm{O} 3^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 2$	$95.50(11)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$162.16(11)$
$\mathrm{O} 3^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	$94.38(11)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 2$	$166.37(12)$

Symmetry code: (i) $x-\frac{1}{2}, y, \frac{1}{2}-z$.
H atoms attached to C atoms were included in the refinement in calculated positions in the riding-model approximation $[\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for Csp^{2}, and $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$ for $\left.\mathrm{Csp}{ }^{3}\right]$.

Data collection: $S M A R T$ (Bruker, 2000); cell refinement: $S M A R T$; data reduction: SAINT (Bruker, 2000); program(s) used to solve
structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Wenzhou S \& T Project of China (grant No. S2003A008).

References

Bruker (2000). SMART (Version 5.618), SAINT (Version 6.02a), SADABS (Version 2.03) and SHELXTL (Version 5.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Cano, J., Munno, G. D., Sanz, J. L., Ruiz, R., Fanus, J., Lloret, F., Julve, M. \& Caneschi, A. (1997). J. Chem. Soc. Dalton Trans. pp. 1915-1923.
Chen, F., Li, X.-H., Xiao, H.-P. \& Hu, M.-L. (2004). Acta Cryst. E60, m708m710.
Sun, D.-F., Cao, R., Liang, Y.-C., Hong, M.-C., Su, W.-P. \& Weng, J.-B. (2000). Acta Cryst. C56, e240-e241.
Sun, D.-F., Cao, R., Liang, Y.-C., Shi, Q., Su, W.-P. \& Hong, M.-C. (2001). J. Chem. Soc. Dalton Trans. pp. 2335-2340.
Xiao, H.-P., Li, X.-H., Ye, M.-D. \& Hu, M.-L. (2004). Acta Cryst. E60, m253m254.
Xiao, H.-P. \& Zhu, L.-G. (2003). Chin. J. Inorg. Chem. 19, 1179-1183.
Zhu, L.-G., Xiao, H.-P. \& Lu, J.-Y. (2004). Inorg. Chem. Commun. 7, 9496.

