metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xin-Hua Li and Hong-Ping Xiao*

Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: hp_xiao@wznc.zj.cn

Key indicators

Single-crystal X-ray study T = 273 KMean $\sigma(C-C) = 0.005 \text{ Å}$ R factor = 0.052 wR factor = 0.133 Data-to-parameter ratio = 13.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[[(2,2'-bipyridine)copper(II)]-μterephthalato] *N*,*N*-dimethylformamide solvate]

Received 17 May 2004

Accepted 25 May 2004

Online 5 June 2004

In the title complex, $\{[Cu(C_8H_4O_4)(C_{10}H_8N_2)]\cdot C_3H_7NO\}_n$, each Cu atom is surrounded by three O atoms from two terephthalate dianions and two N atoms from a 2,2'-bipyridine molecule, forming a distorted square-pyramidal geometry. The terephthalate dianion functions as a bridge between two Cu atoms and forms a one-dimensional zigzag chain coordination polymer.

Comment

During the study of the structures of complexes in the Cu^{2+/} phen/H₂tp (phen is 1,10-phenanthroline and H₂tp is terephthalic acid) system (Cano *et al.*, 1997; Chen *et al.*, 2004; Sun *et al.*, 2000, 2001; Xiao *et al.*, 2004; Zhu *et al.*, 2004) and in the Cu^{2+/}/2,2'-bipy/H₂ta (2,2'-bipy is 2,2'-bipyridine) system (Xiao & Zhu, 2003), we obtained a series of dinuclear complexes and one-dimensional zigzag chain coordination polymers. These complexes display a diversity of structures, and new complexes are constantly being produced through different reactions and even small changes, such as the use of different solvents, temperature, synthesis conditions or H-atom acceptors. All of these factors encouraged us to research these systems more deeply. Here, the title compound, $[Cu(2,2'-bipy)(tp)]\cdot(DMF)$, (I), represents an example.

In (I), the Cu atom is surrounded by three O atoms from two terephthalate dianions and two N atoms from a 2,2'-bipyridine molecule in a distorted square-pyramidal geometry (Fig. 1). The Cu1-N1 and Cu1-N2 bonds lengths are 1.996 (3) and 2.007 (3) Å, respectively. The apical position is occupied by atom O1, the corresponding axial Cu1-O1 [2.401 (3) Å] bond length being longer than the two basal [Cu1-O3ⁱ = 1.930 (2) Å and Cu1-O2 = 1.992 (2) Å; symmetry code: (i) $x - \frac{1}{2}, y, \frac{1}{2} - z$] bonds lengths.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved The terephthalate dianion functions as a bridge between two Cu atoms in a tridentate coordination mode. The 2,2'-

The coordination environment of the Cu^{II} cation in (I), with atom numbering for the asymmetric unit, showing displacement ellipsoids at the 50% probability level.

Figure 2

A view of the one-dimensional zigzag chain structure in (I); the DMF solvent molecules and H atoms have been omitted for clarity.

Figure 3

A view, down the b axis, of the packing; the DMF solvent molecules and H atoms have been omitted for clarity.

bipyridine group acts as a chelating ligand. A one-dimensional zigzag chain is formed by the Cu^{II} cations, the μ_2 -bridging terephthalate dianions and the chelating 2,2'-bipyridine ligands (Fig. 2); this configuration is similar to that reported for $[Cu(2,2'-bipy)(tp)(H_2O)](2H_2O)(DMF)$ (Xiao & Zhu, 2003). Moreover, there are $\pi - \pi$ interactions involving the 2,2'bipyridine ligands belonging to adjacent zigzag chains, with a distance of about 3.45 Å. Adjacent zigzag chains interweave with each other to generate a two-dimensional network structure with cavities (Fig. 3). The DMF solvent molecules fill the cavities.

Experimental

A solution (10 ml) of dimethylformamide containing Cu₂Cl₂·2H₂O (0.3 mmol) was added dropwise to a solution (10 ml) of dimethylformamide containing 2,2'-bipyridine (0.3 mmol), terephthalic acid (0.3 mmol) and 1,1'-carbonyldiimidazole (0.3 mmol) at room temperature. The reaction mixture was filtered and the filtrate was left to stand for about two weeks until blue single crystals were obtained.

Crystal data

Cu(C ₈ H ₄ O ₄)(C ₁₀ H ₈ N ₂)]·C ₃ H ₇ NO $M_r = 456.94$ Drthorhombic, <i>Pbca</i> a = 16.6884 (7) Å b = 10.9585 (5) Å c = 22.0082 (9) Å V = 4024.9 (3) Å ³ Z = 8	Mo $K\alpha$ radiation Cell parameters from 3619 reflections $\theta = 2.4-23.0^{\circ}$ $\mu = 1.12 \text{ mm}^{-1}$ T = 273 (2) K Prism, blue 0.27 \times 0.18 \times 0.13 mm
$D_x = 1.508 \text{ Mg m}^{-3}$ Data collection Bruker SMART CCD area-detector diffractometer a and ω scans	3619 independent reflections 3139 reflections with $I > 2\sigma(I)$ $R_{} = 0.035$

and ω scans	$R_{int} = 0.055$
bsorption correction: multi-scan	$\theta_{\rm max} = 25.2^{\circ}$
(SADABS; Bruker, 2000)	$h = -19 \rightarrow 14$
$T_{\min} = 0.784, \ T_{\max} = 0.863$	$k = -13 \rightarrow 12$
9 899 measured reflections	$l = -26 \rightarrow 26$

Refinement

1

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0642P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.052$	+ 5.3628 <i>P</i>]
$wR(F^2) = 0.133$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} = 0.001$
3619 reflections	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
273 parameters	$\Delta \rho_{\rm min} = -0.49 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cu1-O3 ⁱ	1.930 (2)	Cu1-N2	2.007 (3)
Cu1-O2	1.992 (2)	Cu1-O1	2.401 (3)
Cu1-N1	1.996 (3)		
O3 ⁱ -Cu1-O2	95.50 (11)	O2-Cu1-N1	162.16 (11)
O3 ⁱ -Cu1-N1	94.38 (11)	O3 ⁱ -Cu1-N2	166.37 (12)

Symmetry code: (i) $x - \frac{1}{2}$, $y, \frac{1}{2} - z$.

H atoms attached to C atoms were included in the refinement in calculated positions in the riding-model approximation [C-H] =0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for Csp^2 , and C-H = 0.96 Å and $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm C}) \text{ for } {\rm Cs}p^{3}$].

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve

metal-organic papers

structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Wenzhou S & T Project of China (grant No. S2003A008).

References

- Bruker (2000). SMART (Version 5.618), SAINT (Version 6.02a), SADABS (Version 2.03) and SHELXTL (Version 5.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cano, J., Munno, G. D., Sanz, J. L., Ruiz, R., Fanus, J., Lloret, F., Julve, M. & Caneschi, A. (1997). *J. Chem. Soc. Dalton Trans.* pp. 1915–1923.
- Chen, F., Li, X.-H., Xiao, H.-P. & Hu, M.-L. (2004). Acta Cryst. E60, m708m710.
- Sun, D.-F., Cao, R., Liang, Y.-C., Hong, M.-C., Su, W.-P. & Weng, J.-B. (2000). Acta Cryst. C56, e240–e241.
- Sun, D.-F., Cao, R., Liang, Y.-C., Shi, Q., Su, W.-P. & Hong, M.-C. (2001). J. Chem. Soc. Dalton Trans. pp. 2335–2340.
- Xiao, H.-P., Li, X.-H., Ye, M.-D. & Hu, M.-L. (2004). Acta Cryst. E60, m253m254.
- Xiao, H.-P. & Zhu, L.-G. (2003). Chin. J. Inorg. Chem. 19, 1179–1183.
- Zhu, L.-G., Xiao, H.-P. & Lu, J.-Y. (2004). Inorg. Chem. Commun. 7, 94–96.